Unit-1

Q. 1 The general solution of the equation $y=x y^{\prime}-\left(y^{\prime}\right)^{3}$ is
A. $y=c x-c^{3}$
B. $y=c x+c^{3}$
C. $y=c x$
D. $y=c^{3}$
Q. 2 The integrating factor of the differential equation $\left(3 y^{2}+2 x y\right) d x-(2 x y+$ $\left.x^{2}\right) d y=0$ is
A. $\frac{1}{x y^{2}}$
B. $\frac{1}{x^{2} y}$
C. $\frac{1}{x y(x+y)}$
D. $\frac{1}{x+y}$
Q. 3 The integrating factor of the differential equation $(1+x y) y d x+(1-x y) x d y=$ 0 is
A. $\frac{1}{2 x^{2} y^{2}}$
B. $\frac{1}{2 x y}$
C. $\frac{1}{x+y}$
D. $\frac{1}{x-y}$

Q: The solution of $(x-y 2) d x+2 x y d y=0$ is
A. $y e^{\frac{y^{2}}{x}}=A$
B. $x e^{\frac{y^{2}}{x}}=A$
C. $y e^{\frac{x}{y^{2}}}=A$
D. $x e^{\frac{x}{y^{2}}}=A$

Q: Differential equation $x d y-y d x-2 x 3 d x=0$ has the solution
(a) $y+x 3=C 1 x$
(b) $-y+x 3=C 2 x$
(c) $y-x 2=C 3 x$
(d) $y 3-x 3=C 4 x$

Q: Solution of $y d x-x d y+(1+x 2) d x+x 2 \sin y d y=0$ is
(a) $-y+x 2-1-x \cos y=c x$
(b) $-x+y 2-1-x \cos y=c y$
(c) $-y+x 2-x \cos y=c x$
(d) $-x+y 2-x \cos y=c y$

Q: The general solution of $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$ is
(a) $\sin (y / x)=c$
(b) $\cos (y / x)=c x$
(c) $\sin (y / x)=c x$
(d) $\cos (y / x)=c$

Q: The integrating factor corresponding to differential equation $y\left(x^{2} y^{2}+2\right) d x+$ $x(2-2 x 2 y 2) d y=0$ is
(a) $\frac{1}{3 x^{3} y^{3}}$
(b) $\frac{-1}{3 x^{3} y^{3}}$
(c) $\frac{-1}{3 x y}$
(d) $\frac{1}{3 x y}$

Q: The integrating factor corresponding to differential equation $\left(x^{3} y^{3}+x^{2} y^{2}+x y+\right.$ 1) $y d x+\left(x^{3} y^{3}-x^{2} y^{2}-x y+1\right) x d y=0$ is
(a) $\frac{1}{2 y^{2} x^{2}(x y-1)}$
(b) $\frac{1}{2 y^{2} x^{2}(x y+1)}$
(c) $\frac{1}{2 y^{2} x^{2}}$
$\frac{-1}{2 y^{2} x^{2}}$
Q. Solve $(x+y) d y=(x-y) d x$
a) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{C}$
b) $x^{2}+2 x y+y^{2}=C$
c) $x^{2}-2 x y-y^{2}=C$
d) $x^{2}-2 x y+y^{2}=C$
Q. Which of the following equations is an exact DE?
a) $\left(x^{2}+1\right) d x-x y d y=0$
b) $x d y+(3 x-2 y) d x=0$
c) $2 x y d x+\left(2+x^{2}\right) d y=0$
d) $x^{2} y d y-y d x=0$
Q. Q. The standard form of a clairout differential equation is
a. $y=p^{2} x+f(x)$
b. $y=p^{2} x+f(p)$
c. $y=p x+f(x)$
d. $y=p x+f(p)$

Q: An integrating factor of $\sinh y d x+\cosh y d y=0$ is
(a) e^{x}
(b) x
(c) y
(d) $x y$

Q: Which of the following is not an integrating factor of $x d y-y d x=0$?
(a) $\frac{1}{x^{2}}$
(b) $\frac{1}{\left(x^{2}+y^{2}\right)}$
(c) $\frac{1}{x y}$
(d) $\frac{x}{y}$

Q: If the integrating factor of $\left(\begin{array}{ll}x^{7} & y^{2}+3 y\end{array}\right) \mathrm{dx}+\left(\begin{array}{ll}3 x^{8} & y-x\end{array}\right) \mathrm{dy}=0$ is $x^{m} y^{n}$ then
(a) $m=-7, n=1$
(b) $m=1, n=-7$
(c) $m=n=0$
(d) $\mathrm{m}=\mathrm{n}=1$

Unit-2

Q. 1 Which of the following function are linearly independent?
A. $\sin x, \sin 2 x, \sin 3 x$
B. $2 x, 6 x+3,3 x+2$
C. $\log x, \log x^{2}, \log x^{3}$
D. None of these
Q. 2 The wronskian of $1, \sin x, \cos x$ is
A. -1
B. -2
C. -3
D. -4
Q. 3 The solution of the differential equation $4 y^{\prime \prime}-4 y^{\prime}+y=0$ is
A. $y(x)=(A+B x) e^{-\frac{x}{2}}$
B. $y(x) A e^{-\frac{x}{2}}+B e^{-\frac{x}{2}}$
C. $y(x)=(A x+B x) e^{-\frac{x}{2}}$
D. None of these

Q: The solution of the $\frac{d^{4} y}{d x^{4}}+4 y=0$ is
(a) $A e^{-x}+B e^{x}+C \sin x+D \cos x$
(b) $(A+B x) e^{x}+(C+D x) e^{-x}$
(c) $e^{x}[A \cos x+B \sin x]+e^{-x}[C \cos x+D \sin x]$
(d) None of these

Q: The primitive of the equation $\left(D^{2}-2 D+5\right)^{2} y=0$ is
(a) $e^{x}(A \cos 2 x+B \sin 2 x)$
(b) $e^{x}\{(A+B x) \cos 2 x+$
$(C+D x) \sin 2 x\}$
(c) $e^{x}(A \cos 2 x+B \sin 2 x)+e^{x}(C \cos 2 x+D \sin 2 x)$
(d) None of these

Q: The differential equation whose auxiliary equations roots are $2,2,1$ is
(a) $A e^{x}+B e^{2 x}+C e^{2 x}$
(b) $A e+(B+C x) e^{2 x}$
(c) $A e^{x}+(B+C x) e^{2 x}$
(d) $A e+B e^{2 x}+C e^{2 x}$

Q: The number of arbitrary constants in the complete primitive of the differential equation $\phi\left(x, y, \frac{d y}{d x}, \frac{d^{3} y}{d x^{3}}\right)=0$ is
(a) 1
(b) 2
(c) 3
(d) 4

Q: The order and degree of the differential equation $\left(D^{2}+1\right)^{2}\left(D^{2}+D+1\right) y=0$ is
(a)order=6 and degree=2
(b)order=4 and degree=2
(c)order=2 and degree=2
(d) order=6 and degree=1

Q: The primitive of the equation $\left(D^{4}-5 D^{2}+4\right) y=0$ is
(a) $A e^{x}+B e^{4 x}$
(b) $A e^{-x}+B e^{-4 x}$
(c) $A e^{-2 x}+B e^{-x}+C e^{x}+D e^{2 x}$
(d) None of these

Q: The DE $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ on $(0, \infty)$ has \qquad linearly independent solutions.
a) 2
b) 3
c) infinite
d) Can't say

Q: What is the least number of LI solutions a homogeneous LDE equation can have, if $x^{2} e^{2 x}$ is its particular solution?
a) 2
b) 3
c) 4
d) 5

Q: What are the characteristic roots of a homogeneous LDE having $4+x e^{2 x}$ as its particular solution?
a) 0,2
b) 4,2
c) 4,2 , 2
d) $0,2,2$

Q: The solution of $\left(D^{2}+1\right) y=0$ is
(a) $A \cos x+B \sin x$
(b) $\llbracket e^{x}(A \cos x+B \sin x)$
(c) $(A+B) \cos x+(C+D) \sin x$
(d) $(A+B x) \cos x+(C+D x) \sin x$

Q : The solution of $\left(D^{2}+1\right) y=0$, satisfying the condition $y(0)=1, y\left(\frac{\pi}{2}\right)=2$ is
(a) $\cos x+2 \sin x$
(b) $\cos x+\sin x$
(c) $2 \cos x+\sin x$
(d) $2(\cos x+\sin x)$

Q: The primitive of $\llbracket\left(D \rrbracket^{2}-2 D+5\right)^{2} y=0$
(a) $e^{x}\{(a+b x) \cos 2 x+(c+d x) \sin 2 x\}$
(b) $e^{2 x}\{(a+b x) \cos x+(c+d x) \sin x\}$
(c) $\left(\mathrm{a} e^{x}+b e^{2 x}\right) \cos x+\left(\mathrm{c} e^{x}+d e^{2 x}\right) \sin x$
(d) $e^{x}(a \cos x+b \cos 2 x+c \sin x+d \sin 2 x)$

Unit-3
Q. 1 Find the particular integral of $\left(D^{2}+5 D+6\right) y=e^{x}$
A) $e^{\frac{x}{6}}$
B) $e^{\frac{x}{12}}$
C) $e^{\frac{x}{18}}$
D) $e^{\frac{x}{24}}$
Q. 2 Which of the following is Euler Cauchy equation?
A) $x^{2} y^{\prime}+x^{3} y=2 x$
B) $x^{2} y^{\prime \prime}-5 x y^{\prime}+13 y=30 x^{2}$
C) $x^{3} y^{\prime \prime}+x y^{\prime}+x y=30 x^{2}$
D) none of these
Q. 3 Solve $y^{i v}+3 y^{\prime \prime}=108 x^{2}$
A) $A+B x+C \cos x+D \sin x+3 x^{4}+12 x^{2}$
B) $A+B x+C \cos \sqrt{3} x+D \sin \sqrt{ } 3 x+12 x^{2}$
C) $A+B x+C \cos \sqrt{3} x+D \sin \sqrt{3} x+3 x^{4}$
D) $A+B x+C \cos \sqrt{3} x+D \sin \sqrt{3} x+3 x^{4}-12 x^{2}$

Q: The particular integral of $\left(D^{2}+a^{2}\right) y=\sin a x$ is
(a) $\frac{-x}{2 a} \cos a x$
(b) $\frac{x}{2 a} \cos a x$
(c) $\frac{a x}{2} \cos a x$
(d) $\frac{-a x}{2} \cos a x$

Q: The particular integral of $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2}+2 x+4$ is
(a) $\frac{x^{2}}{3}+4 x$
(b) $\frac{x^{3}}{3}+4 x$
(c) $\frac{x^{3}}{3}+4$
(d) $\frac{x^{3}}{3}+4 x^{2}$

Q: The complementary function of $\left(D^{2}+1\right)^{2} y=2$ is
(a) $A \sin x+B \cos x$
(b) $e^{\wedge} x(A \cos x+B \sin x)$
(c) $(\mathrm{A}+\mathrm{B}) \sin \mathrm{x}+(\mathrm{C}+\mathrm{D}) \cos \mathrm{x}$
(d) $(\mathrm{A}+\mathrm{Bx}) \sin \mathrm{x}+(\mathrm{C}+\mathrm{Dx}) \cos \mathrm{x}$

Q: The trial solution of corresponding to $2 e^{3 x} \sin (2 x+4)$ is
(a) $A e^{3 x} \sin (2 x+4)$
(b) $2 A e^{3 x} \sin (2 x+4)$
(c) $A e^{3 x} \sin (2 x+4)+A e^{3 x} \cos (2 x+4)$
(d) $2 A e^{3 x} \sin (2 x+4)+2 A e^{3 x}$ $\cos (2 x+4)$

Q: The general solution of the differential equation $\left(\mathrm{d}^{\wedge} 2 \mathrm{y}\right) /\left(\mathrm{dx}{ }^{\wedge} 2\right)+4 \mathrm{y}=$ 【 $\sin \rrbracket{ }^{\wedge} 2 \mathrm{x}$ is
(a) $A e^{2 x}+B e^{-2 x}+2 \sin x \cos x$
(b) $A \cos 2 x+B \sin 2 x+\frac{1}{8}-$
$\frac{x}{8} \sin 2 x$
(c) $(A+B \cos 2 x) e^{-2 x}-\frac{1}{8} \cos 2 x$
(d) $A \cos (2 x+B)+\frac{1}{8}$

Q: On putting $x=e^{z}$, the transformed differential equation of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x$ is
(a) $\frac{d^{2} y}{d x^{2}}-y=e^{z}$
(b) $\frac{d^{2} y}{d x^{2}}+y=e^{z}$
(c) $\frac{d y}{d x}-y=e^{z^{2}}$
(d) $\frac{d y}{d x}+y=e^{z}$
Q : For solving the equation $y^{\prime \prime}+4 y^{\prime}+4 y=12 e^{-2 x}$ by method of undetermined coefficients, we assume the particular integral as
a) $\mathrm{Ae}^{-2 x}$
b) $A x^{-2 x}$
c) $A x^{2} e^{-2 x}$
d) $\left(A+B x+C x^{2}\right) e^{-2 x}$

Q: The general solution of the equation $4 y^{\prime \prime}-4 y^{\prime}+y=8 e^{x / 2}$ is given by
a) $\mathrm{Ae}^{\mathrm{x} / 2}+\mathrm{Be}^{\mathrm{x} / 2}+\mathrm{x}^{2} \mathrm{e}^{\mathrm{x} / 2}$
b) $\mathrm{Ae}^{\mathrm{x} / 2}+\mathrm{Bxe}^{\mathrm{x} / 2}+\mathrm{x}^{2} \mathrm{e}^{\mathrm{x} / 2}$
c) $\mathrm{Ae}^{\mathrm{x} / 2}+\mathrm{Be}^{\mathrm{x} / 2}+\mathrm{e}^{\mathrm{x} / 2}$
d) $\mathrm{Ae}^{\mathrm{x} / 2}+\mathrm{Bxe}^{\mathrm{x} / 2}+\mathrm{xe}^{\mathrm{x} / 2}$

Q: If then particular integral $y_{p}(x)=A(x) \cos x+B(x) \sin x$ where $B(x)$ is given by
a) $\log (\sin x)$
b) $\quad \tan x$
c) $\cos x$
d) $-\tan x$

Q: The I.F of homogeneous equation $a(x, y) d y+b(x, y) d x=0$ is
(a) $1 /(a x+b y),(a x+b y)$ not equal to zero
(b) $1 /(b x+a y)$, (ax-by) not equal to zero
(c) $1 /(a x+b y),(a x-b y)$ not equal to zero
(d) $1 /(b x+a y),(b x+a y)$ not equal to zero

Q: The general solution $d y / d x=(y / x)+\tan (y / x)$ is
(a) $Y=c x \sin x$ (b) $y / x=\sin x$
(c) $\sin (y / x)=c x$
(d) $\sin (y / x)=c \sin x$

Q: If the I.F of $\left(x^{\wedge} 7 . y^{\wedge} 2+3 y\right) d x+\left(3 x^{\wedge} 8 y-x\right) d y=0$ is $\left(x^{\wedge} m\right)\left(y^{\wedge} n\right)$ then
(a) $\mathrm{m}=1, \mathrm{n}=-7$ b) $\mathrm{m}=-7, \mathrm{n}=1$
(c) $m=n=0$
(d) $m=n=1$

The integrating factor of the differential equation $(1+x y) y d x+(1-x y) x d y=0$ is
A. $1 /\left(\llbracket 2 x \rrbracket \wedge 2 y^{\wedge} 2\right)$
B. $1 / 2 x y$
C. $1 /(x+y)$
D.1/(x-y)

Q: The particular integral of $\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)+d y / d x=x^{\wedge} 2+2 x+4$ is
(a) $x^{\wedge} 2 / 3+4 x$
(b) $x^{\wedge} 3 / 3+4 x$
(c) $x^{\wedge} 3 / 3+4$
(d) $x^{\wedge} 3 / 3+4 x^{\wedge} 2$

Q: The differential equation whose auxiliary equations roots are $2,2,1$ is
(a)Aex+Be2x+Ce2x
(b) $A e+(B+C x) e 2 x$
(c) $A e x+(B+C x) e 2 x$
(d) $\mathrm{Ae}+\mathrm{Be} 2 \mathrm{x}+\mathrm{Ce} 2 \mathrm{x}$

Q: Which of the following pair of functions is not a linearly independent solutions of $y^{\prime \prime}+9 y=0$?
(a) $\sin 3 x, \sin 3 x-\cos 3 x$
(b) $\sin 3 x+\cos 3 x, 3 \sin x-4 \sin ^{\wedge} 3 x$
(c) $\sin ^{\wedge} 3 x, \sin 3 x \cos 3 x$
(d) $\sin 3 x+\cos 3 x, 4 \cos \wedge 3 x-3 \cos x$

Q: The roots of the equation $D^{2} y-4 D y+3 y=0$ are
(a) 1,3
(b) 2,4
© 3,2
(d) 6,2

Q: The roots of the equation $D^{4} y-7 D^{3} y+15 D^{2}-13 D y+4 y=0$
(a) $1,1,1,4$
(b) 2,2,2,3
(c) $1,1,2,2$,
(d) $3,3,3,4$

